Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138661

RESUMO

Additive manufacturing (AM) constitutes the new paradigm in materials processing and its use on metals and alloys opens new unforeseen possibilities, but is facing several challenges regarding the design of the microstructure, which is particularly awkward in the case of functional materials, like shape memory alloys (SMA), as they require a robust microstructure to withstand the constraints appearing during their shape change. In the present work, the attention is focused on the AM of the important Fe-Mn-Si-based SMA family, which is attracting a great technological interest in many industrial sectors. Initially, an overview on the design concepts of this SMA family is offered, with special emphasis to the problems arising during AM. Then, such concepts are considered in order to experimentally develop the AM production of the Fe-20Mn-6Si-9Cr-5Ni (wt%) SMA through laser powder bed fusion (LPBF). The complete methodology is approached, from the gas atomization of powders to the LPBF production and the final thermal treatments to functionalize the SMA. The microstructure is characterized by scanning and transmission electron microscopy after each step of the processing route. The reversibility of the ε martensitic transformation and its evolution on cycling are studied by internal friction and electron microscopy. An outstanding 14% of fully reversible thermal transformation of ε martensite is obtained. The present results show that, in spite of the still remaining challenges, AM by LPBF offers a good approach to produce this family of Fe-Mn-Si-based SMA, opening new opportunities for its applications.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764633

RESUMO

Cu-Al-Ni is a high-temperature shape memory alloy (HTSMA) with exceptional thermomechanical properties, making it an ideal active material for engineering new technologies able to operate at temperatures up to 200 °C. Recent studies revealed that these alloys exhibit a robust superelastic behavior at the nanometer scale, making them excellent candidates for developing a new generation of micro-/nano-electromechanical systems (MEMS/NEMS). The very large-scale integration (VLSI) technologies used in microelectronics are based on thin films. In the present work, 1 µm thickness thin films of 84.1Cu-12.4 Al-3.5Ni (wt.%) were obtained by solid-state diffusion from a multilayer system deposited on SiNx (200 nm)/Si substrates by e-beam evaporation. With the aim of evaluating the thermal stability of such HTSMA thin films, heating experiments were performed in situ inside the transmission electron microscope to identify the temperature at which the material was decomposed by precipitation. Their microstructure, compositional analysis, and phase identification were characterized by scanning and transmission electron microscopy equipped with energy dispersive X-ray spectrometers. The nucleation and growth of two stable phases, Cu-Al-rich alpha phase and Ni-Al-rich intermetallic, were identified during in situ heating TEM experiments between 280 and 450 °C. These findings show that the used production method produces an HTSMA with high thermal stability and paves the road for developing high-temperature MEMS/NEMS using shape memory and superelastic technologies.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986020

RESUMO

An accurate knowledge of the optical properties of ß-Ga2O3 is key to developing the full potential of this oxide for photonics applications. In particular, the dependence of these properties on temperature is still being studied. Optical micro- and nanocavities are promising for a wide range of applications. They can be created within microwires and nanowires via distributed Bragg reflectors (DBR), i.e., periodic patterns of the refractive index in dielectric materials, acting as tunable mirrors. In this work, the effect of temperature on the anisotropic refractive index of ß-Ga2O3n(λ,T) was analyzed with ellipsometry in a bulk crystal, and temperature-dependent dispersion relations were obtained, with them being fitted to Sellmeier formalism in the visible range. Micro-photoluminescence (µ-PL) spectroscopy of microcavities that developed within Cr-doped ß-Ga2O3 nanowires shows the characteristic thermal shift of red-infrared Fabry-Perot optical resonances when excited with different laser powers. The origin of this shift is mainly related to the variation in the temperature of the refractive index. A comparison of these two experimental results was performed by finite-difference time-domain (FDTD) simulations, considering the exact morphology of the wires and the temperature-dependent, anisotropic refractive index. The shifts caused by temperature variations observed by µ-PL are similar, though slightly larger than those obtained with FDTD when implementing the n(λ,T) obtained with ellipsometry. The thermo-optic coefficient was calculated.

4.
Opt Lett ; 46(2): 278-281, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449007

RESUMO

In this Letter, we report optical confinement in the near-ultraviolet (near-UV) range in Ga2O3 nanowires (NWs) by distributed Bragg reflector (DBR) nanopatterned cavities. High-contrast DBRs, which act as the end mirrors of the cavities of the desired length, are designed and fabricated by focused ion beam etching. The resonant modes of the cavities are analyzed by micro-photoluminescence measurements, analytical models, and simulations, which show very good agreement between each other. Experimental reflectivities up to 50% are obtained over the 350-410 nm region for the resonances in this wavelength range. Therefore, Ga2O3 NW optical cavities are shown as good candidates for single-material-based near-UV light emitters.

5.
Nat Nanotechnol ; 12(8): 790-796, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28553962

RESUMO

Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L21 single crystals from a Cu-Al-Ni shape-memory alloy from 2 µm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

6.
Nat Nanotechnol ; 4(7): 415-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19581892

RESUMO

Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...